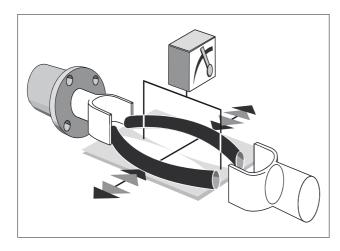


Coriolis Mass Flow Meter and Counter

- Measuring range: upto 70 t/h
- Measuring accuracy (mass flow):

Liquids: $\pm 0.35\%$ of measured value Gases: $\pm 0.75\%$ of measured value

- pmax PN 40, tmax 125°C
- Flange DN 8...50, DIN/ANSI
- Stainless steel 1.4404
- Analogue, frequency, switching and status output



Description

Coriolis flow measurement is described as a direct or dynamic technique; it supplies a signal that is proportional to the mass flow, and practically independent of material properties, such as conductivity, pressure, viscosity, or temperature.

A Coriolis force occurs when linear motion and rotary motion are superimposed on one another. In industrial systems incorporating this principle, mechanical vibrations occur at the point of rotary motion. Fluid flowing through two tubes causes the tubes to resonate.

The mass flow alters the phase angle of the vibration, which produces a phase difference between the vibration at the tube inlet and that at the tube outlet. This phase difference is proportional to the mass rate of flow; it is amplified to form the output signal.

The resonance frequency of the measuring tube is a function of the resonating mass in the tube, and therefore a function of the medium density. (A regulating circuit ensures that the system is constantly resonating.) The resonance-frequency displacement, which arises from the thermal expansion of the material of the measuring tube, is compensated by temperature measurement. The measured temperature corresponds to the medium temperature.

Fields of application

For mass or volume flow measurement. Application examples:

- Fluids and low conductivity solvents
- Deionized Water
- Fuel oil
- Food oil
- Conductive solvents
- Gases

Cavitation should be avoided, as it can effect the vibration of the measuring tubes. Media, whose properties are similar to water under normal conditions, have no special requirements. However, media that tend to boil easily, namely hydrocarbons, liquefied gases etc, or with suction conveyance, care should be taken not to exceed the liquid vapour pressure, and cause the liquid to boil.

Technical detals

Measuring range: 0...70 t/h (see also table)

Operable flow range: 1000:1

Measuring accuracy for pulse and frequency output (under reference conditions)

Reference conditions: limits of error acc. to ISO/DIS 11631

20...30°C; 2...4 bar Calibration systems as per

national norms

Zero-point adjusted under service conditions, and field density adjusted

 $\pm 0.35\%$ of meas, value $\pm 0.01\%$ f.s.

 $\pm 0.75\%$ of meas, value $\pm 0.01\%$ f.s.

Mass rate of flow

(liquids):

Mass rate of flow

(gases):

Volume rate of flow

(liquids):

 $\pm 0.45\,\%$ of meas. value $\pm 0.01\,\%$ f.s.

Density (liquids): $\pm 0.02 \text{ g/cm}^3$

Temperature: ± 0.5 °C ± 0.005 x T (T = temp. of measured medium in °C)

Repeatability:

Mass rate of flow

(liquids):

 $\pm 0.15\%$ of meas. value $\pm 0.005\%$ f.s.

Mass rate of flow

(gases):

 $\pm 0.35\,\%$ of meas. value $\pm 0.005\,\%$ f.s.

Volume rate of flow

Volume ra (liquids):

 $\pm 0.20\%$ of meas. value $\pm 0.005\%$ f.s.

Density (liquids): ±0.0005 g/cm³

Temperature: ± 0.25 °C ± 0.0025 x T

(T = temp. of measured medium in °C)

Temperature

coefficient: typically $\pm 0.0002\%$ f.s./°C

Pressure coefficient: -0.009 % of meas. value/bar (DN 50);

0%/bar (DN 8...40) Liquids and gases

Medium:

Installation position:

vertical (recommanded)

and horizontal

Inlet/outlet: not necessary

Operating conditions: no cavitation

Temperature of

measured medium: -40...+125°C Ambient temperature: -20...+60°C

Technical details (continued)

Ambient temperat.: -20...+60°C Max. pressure: PN 40, PN100,

CI150, CI300

Materials

Flange: Stainless steel 1.4404
Measuring tube: Stainless steel 1.4539

(welded process connections

without internal seals)

Sensor case: Stainless steel 1.4301

(not in contact with media)

Housing: varnished aluminium die casting,

powder coated

Display: 2-line LCD-display each

16 digits; backlit

different sizes of measured values

and status configurable

Setting: via 3 buttons (-, +, E)

Languages: Western-Europe / America:

English, German, Spanish, Italien,

French, Netherlands

North-/East-Europe: English,

German, Russian, Polish, Norwegian,

Finnish, Swedish, Czech

South-/East-Asia: English, German,

Japanese, Indonesian

Functions: Measurement of mass flow, densitiy,

volume and temperature

Total volume V/R flow direction sound velocity,

Signal strength, Self-diagnosis,

single-stage dosing

Creep suppression: free adjustable

Current output: 0(4)-20 mA; active/passive

Load: $\max. 700 \Omega$ with active switchings

Pulse/frequency

output: Open Collector,

max. 30 V_{DC}, 250 mA; passive

pulse width: 0.5...2000 ms, adjustable

End frequency: 2...1000 Hz

Status/switching

output: Open Collector,

 $\begin{array}{l} \text{max. 30 V}_{\text{DC}}\text{, 250 mA; passive,} \\ \text{V/R recognition, ceiling, error,} \\ \text{monitoring of measured medium} \end{array}$

Status input: 3...30 V_{DC} , $Ri = 5 k\Omega$,

configurable for: totalizer reset,

measured-value suppression, reset error messages,

zero point adjustment

Electr. connection: Cable gland M20x1.5

or

Thread 1/2 NPT, G 1/2, PG 13,5

Cable (isolated version:) 6 x 038 mm² PVC cable with

common shield and individually shielded cores,

Conductor resistance: $\leq 50 \Omega/\text{km}$;

Capacitance: core/shield:

≤ 420 pF/m

Cable length: max. 20 m

Permanent operating temperature:

+105°C

Power supply: 85...260 V_{AC} (45...65 Hz)

20...55 V_{AC} (45...65 Hz)

16...62 V_{DC}

Power input: < 15 VA (AC); < 15 W (DC)

Switch-on current: max. 3 A (< 5 ms) at 260 V_{AC}

max. 13.5 A (< 50 ms) at 24 V_{DC}

Resistance to vibration: upto 1 g, 10...150 Hz
Protection: IP 67 or NEMA 4X

Weight (Compact version)

DN	Weight [kg]
8	8
15	8
25	10
40	15
50	22

Isolated version

Sensor:

Weight of the compact version

minus 2 kg

Measuring range table (Liquids)

DN	Maximum end values	Recomand. end values
8	02000 kg/h	1002000 kg/h
15	06500 kg/h	3256500 kg/h
25	018000 kg/h	90018000 kg/h
40	045000 kg/h	225045000 kg/h
50	070000 kg/h	350070000 kg/h

Ideally: 20...50% of maximum end value;

Abrasive Media: v < 1 m/s

Measuring ranges for gases

$$\dot{m}_{\text{max}(G)} = \, \dot{m}_{\text{max}(F)} \, \cdot \, \, \frac{\rho_{(G)}}{225 \; \text{kg/m}^3} \label{eq:max_gain}$$

 $\dot{m}_{max(G)} = max.$ end value for gas [kg/h]

 $\dot{m}_{max(F)} = max.$ end value for liquids [kg/h]

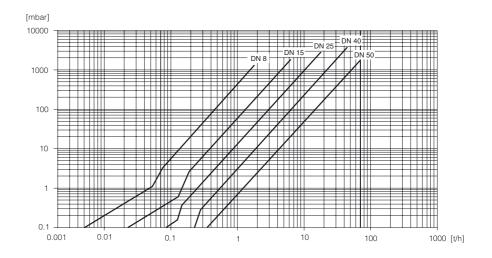
 $\rho_{\text{(G)}} = \text{Gas density in [kg/m}^3]$ at process conditions

Calulating example

PMS, DN50, max. end value: 70 000 kg/h (liquids) Gas: air, density: 60.3 kg/m³ (at 20 °C and 50 bar)

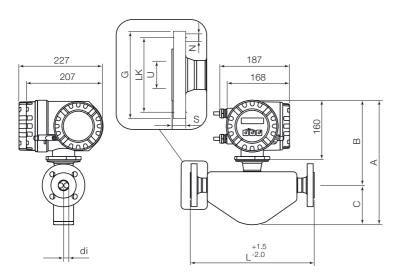
$$\dot{m}_{max(G)} = \frac{\dot{m}_{max(F)} \cdot P_{(G)}}{225 \text{ kg/m}^3} = \frac{70000 \text{ kg/h} \cdot 60.3 \text{ kg/m}^3}{225 \text{ kg/m}^3} = 18760 \text{ kg/h}$$

Electrical connection

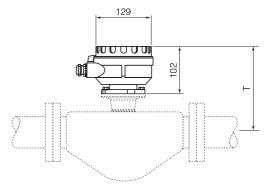

Terminal No.	Function
20 - 21	Status input
22 - 23	Status output
24 - 25	Frequency output
26 - 27	Current output

Order details (example: PMS-ES15 F 00 A 0 A)

Nominal size	Model	Connection form	Housing	Electrical connection	Power supply/ languages	Output
				F = with	0 = 85260 V _{AC} / West Europe	
DN 8, 3/8"	PMS-ES08	F = DIN PN 40	00 = Compact version	threaded	3 = 1662 V _{DC} / West europe	
DN 15, ½"	PMS-ES15	H = DIN PN 100	05 = Isolated	cable connection	5 = 85260 V _{AC} / Asia	A = 4 - 20 mA + pulse
DN 25, 1"	PMS-ES25	R = ANSI CI. 150 RF Sch. 40	version 10 m cable	M20x1.5	6 = 1662 V _{DC} /	D = 4 - 20 mA
DN 40, 1 ½"	PMS-ES40	S = ANSI CI. 300	07 = Isolated	H = Thread ½ NPT	Asia	+ pulse + status
DN 50, 2"	PMS-ES50	RF Sch. 40	version 20 m cable	C = Thread G ½	8 = 85260 V _{AC} / East Europe	States
					9 = 1662 V _{DC} / East Europe	

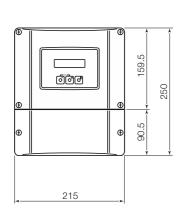


Pressure loss diagramm for water

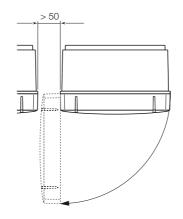


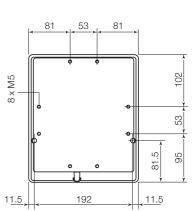
Dimensions

Compact version



Isolated version Sensor




T = Dimensions B in the compact version minus 58 mm (with corresponding nominal size)

Wall mounted housing

Flange EN 1092-1 (DIN 2501) / PN 40

DN	Α	В	С	G	L	N	S	LK	U	di
[mm]	[mm]	[mm]	[mm]	[mm]						
8	317	224	93	95	232	4xØ14	16	65	17.3	5.35
15	331	226	105	95	279	4xØ14	16	65	17.3	8.30
25	337	231	106	115	329	4xØ14	18	85	28.5	12.00
40	358	237	121	150	445	4xØ18	18	110	43.1	17.60
50	423	253	170	165	556	4xØ18	20	125	54.5	26.00

Flange EN 1092-1 (DIN 2501) / PN 100

DN	Α	В	С	G	L	N	S	LK	U	di
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
8	317	224	93	105	261	4xØ14	20	75	17.3	5.35
15	331	226	105	105	295	4xØ14	20	75	17.3	8.30
25	337	231	106	140	360	4xØ18	24	100	28.5	12.00
40	358	237	121	170	486	4 x Ø 22	26	125	42.5	17.60
50	423	253	170	195	581	4 x Ø 26	28	145	53.9	26.00

Flange ANSI B16.5 / CI 150

D	N	Α	В	С	G	L	N	S	LK	U	di
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
8	3/8"	317	224	93	88.9	232	4xØ15.7	11.2	60.5	15.7	5.35
15	1/2"	331	226	105	88.9	279	4 x Ø 15.7	11.2	60.5	15.7	8.30
25	1"	337	231	106	108.0	329	4 x Ø 15.7	14.2	79.2	26.7	12.00
40	1 1/2"	358	237	121	127.0	445	4 x Ø 15.7	17.5	98.6	40.9	17.60
50	2"	423	253	170	152.4	556	4 x Ø 15.7	19.1	120.7	52.6	26.00

Flange ANSI B16.5 / CI 300

D	N	Α	В	С	G	L	N	S	LK	U	di
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
8	3/8"	317	224	93	95.2	232	4xØ15.7	14.2	66.5	15.7	5.35
15	1/2"	331	226	105	95.2	279	4xØ15.7	14.2	66.5	15.7	8.30
25	1"	337	231	106	123.9	329	4xØ19.0	17.5	88.9	26.7	12.00
40	1 1/2"	358	237	121	155.4	445	4 x Ø 22.3	20.6	114.3	40.9	17.60
50	2"	423	253	170	165.1	556	8xØ19.0	22.3	127.0	52.6	26.00