Inexpensive, General-purpose Coriolis Flowmeter
AL

GENERAL

Equipped with a sophisticated transmitter (self diagnosis feature, large size display, and field- reconfiguration capability using a touch panel), "ALTImass Type B" is an inexpensive general-purpose Coriolis flowmeter capable of mass flow measurement at a high degree of accuracy.

FEATURES

1. Increased self-diagnostic capabilities: checking for cable faults, pipeline vibration, and monitoring transmitter temperatures, to name a few.
2. You can reconfigure transmitter parameters using a finger touch on the touch panel (also through communication).
3. Fast response: 10 times improved from conventional models.
4. Two alarm indicators provided
5. Increased output signals:

Pulse output (dual output), current output (dual output), and status output (single output)
6. Enhanced maintenance functions:

Error logging, storing factory shipping data, and downloading programs
7. Compatible with various communication protocols
(HART communication, FOUNDATION fieldbus communication, PROFIBUS communication, Modbus communication)
8. Rack-mount transmitter available (refer to GS No.GEJ516E for details)

Remote-mount transmitter

GENERAL PERFORMANCE

Item		Description					
Model		CB006	CB010	CB015	CB025	CB040	CB050
Flow rate	Guaranteed minimum rate (kg/h)	24	76.8	192	576	1920	
	Minimum setting rate (kg/h)	60	192	480	1440		
	Maximum service rate (kg/h)	600	1920	4800	14400		
	Maximum allowable rate (kg/h)	1200	3840	9600	28800		
	Accuracy	$\pm 0.2 \%$ of RD (*1)					
	Repeatability	$\pm 0.1 \%$ of RD (*2)					
	Zero stability (kg/h)	0.09	0.288	0.72	2.16		
Density (Liquid)	Metering range	0.3 to $2 \mathrm{~g} / \mathrm{mL}$					
	Accuracy (Option)	$\pm 0.003 \mathrm{~g} / \mathrm{mL}$					
Analog output accuracy		$\pm 0.1 \%$ of FS added to each accuracy					

$* 1: \pm$ Zero stability error is applied for flow rates below 7.5% of the maximum service rate. (within guaranteed flow range)
$* 2: \pm 1 / 2$ Zero stability error is applied for flow rates below 7.5% of the maximum service rate. (within guaranteed flow range)
*: The general performance is based on factory calibration accuracy.
Zero stability error $=\frac{\text { Zero stability }}{\text { Flow rate at the moment }} \times 100 \% \quad *$: Zero stability and flowrate during the test should read in the same measurement unit.
GENERAL SPECIFICATIONS

- Sensor unit

Item		Description					
Model		CB006	CB010	CB015	CB025	CB040	CB050
Nominal size		10 mm or $1 / 2^{\prime \prime}$	15 mm or $1 / 2^{\prime \prime}$	15 mm or $1 / 2^{\prime \prime}$	25 mm or $1^{\prime \prime}$	40 mm or $1 \cdot 1 / 2^{\prime \prime}$	50 mm or 2"
Materials	Wetted parts	SUS316L					
	Housing	SUS304					
Process connection		JIS 10, 20, 30K, RF/ASME (JPI) 150, 300, 600RF, IDF Ferrule					
Applicable fluid		Liquid					
Density range		0.3 to $2.0 \mathrm{~g} / \mathrm{mL}$					
Measurable temperature range		-40 to $+130^{\circ} \mathrm{C}(* 1)$					
Heatproof temperature		Maximum $150^{\circ} \mathrm{C}$ (*2)					
Maximum operating pressure		Depends on process connection					
Flow direction		Bidirectional					
Explosionproof configuration		TIIS, ATEX, IECEx, KOSHA/KTL, CSA, GOST, NEPSI, ITRI Refer to page 10, 11 for details.					
Dusttight, waterproof configuration		IP66 / 67					

※1: Refer to page 10, 11. In case of non-explosionproof model, up to $130^{\circ} \mathrm{C}$ is permitted. However, the product must be used within the maximum ambient temperature of $45^{\circ} \mathrm{C}$. ※2: CIP/SIP procedures must be performed within the heatproof temperature range

- Transmitter (For the rack-mount transmitter, refer to GS No.GEJ516E.)

Item	Description
Model	PAOK
Power supply	85 to 264 VAC $50 / 60 \mathrm{~Hz}$ or 20 to 30VDC (Safety rated 100 to 240VAC $50 / 60 \mathrm{~Hz}$)
Power consumption	Maximum 15W
Ambient temperature	-40 to $+55^{\circ} \mathrm{C}(* 1)$
Transmission length (Remote-mount type)	Maximum 50m (dedicated 9-core cable used) (*2)
Applicable EU directive	EMC Directive: 2014/30/EU ATEX Directive: 2014/34/EU LVD Directive: 2014/35/EU
Applicable EN standards	EMC : EN61326-1: 2013 ClassA ATEX: EN60079-O: 2012+A11: 2013 EN60079-1: 2014 EN60079-11: 2012 IECEx: IEC60079-0: 2011 IEC60079-1: 2014-06 IEC60079-11: 2011 LVD: EN61010-1: 2010
Explosionproof configuration	TIIS, ATEX, IECEX, KOSHA/KTL, CSA, GOST, NEPSI, ITRI Refer to page 10, 11 for details.
Maritime certification	DNV GL Refer to page 11 for details.
Dusttight, waterproof configuration	IP66 / 67
Transmitter configuration	Integral or Remote-mount
Painting	Sensor: Munsell 10B8/4, Covers (front and rear): 2.5PB4/10
Display	LCD display (128×64 dots), backlight (white, orange) Infrared sensors: 2, LED: 2 (green, red)
Weight	Integral-mount type 3.6kg approx., Remote-mount type 5.0kg approx.
	HART (Standard) HART protocol version 7, Bell202 (*3)
Communication interface	Modbus RS-485 Modbus protocol, Baudrate : 9600bps, $19200 \mathrm{bps}, 38400 \mathrm{bps}$ (Standard) RTU or ASCII, Response time $: 25$ to 50 ms
※Optional except for HART	FOUNDATION fieldbus\quad Al block $\times 4$, IT block $\times 2$, with Link Master function
	PROFIBUS PA Al block $\times 4$, TOT block $\times 2$
Damping (default)	Flow rate 0.8 sec , density 4 sec , temperature 2.5 sec .
Low flow cutoff (default)	Under 1.0\% of maximum service flow rate
Pulse output ($\times 5$)	Open drain (equivalent to open collector) [Minimum 10V to Maximum 30V, 50 mADC , ON resistance 0.6Ω or less] or Voltage pulse (Low level: 1.5 V maximum, High level: 13 V minimum Output impedance: $2.2 \mathrm{k} \Omega$) Setting range: 0.1 to 10000 Hz (Maximum output 11000Hz)
Analog output ($\times 5$)	4 to 20mADC (maximum load 600 $)$ Select two outputs from instant flowrate (mass or volume) temperature, and density.
Status output ($\times 5$)	Open drain (equivalent to open collector) [Maximum 30V, 50 mADC , ON resistance 0.6Ω or less] Select one output from error (*4), flow direction, or high/low alarm (default is error)
Status input ($* 5$)	Contact-closure input (Form "a" contact) Short: 200Ω maximum, Open: $100 \mathrm{k} \Omega$ minimum Select one output from remote zero, total reset, 0% signal lock, or function off (default is function off).

$※ 1$: Below $-20^{\circ} \mathrm{C}$, the display loses its visibility due to weakened contrast. Both the display and infrared sensor may exhibit slow responses below $-20^{\circ} \mathrm{C}$.
※2: If signal transmission length exceeds the maximum length, Please consult OVAL sales office or nearest representative.
The operating temperature range of the dedicated cable (PVC: model code CBP2) is -15 to $+80^{\circ} \mathrm{C}$.
To use in an environment that exceeds the above temperature range, use dedicated cable (PTFE: model code CBT2) instead.
*3: Of the two analog output systems,only analog output 1 is available for HART communication.
※4: Of error outputs, "zero is in progress" status output can also be set up.
$\star 5$: When FOUNDATION fieldbus, PROFIBUS PA is selected as the communication interface, all input and output signals will be turned off.
※: Denoising parts are embedded in the lines between power source, output, communication, and the chassis.
Lower the applied voltage to the following levels in order to conduct insulation test or withstand voltage test on these lines.
AC: 200V, DC: 250 V

DISPLAY

METER ERROR

■ PRESSURE LOSSES

CB015

How to determine pressure loss ($※ 1$)

1. Seeing the graph of the type of flowmeter to be used, find hte pressure loss coefficient C from the flowrate ($\mathrm{g} / \mathrm{min}$ or kg / h) and viscosity (mPa•s). Dividing this value C by specific gravity d (1 for water) gives the pressure loss, or

$$
\Delta \mathrm{P}=\frac{\mathrm{C}}{\mathrm{~d}}(\mathrm{MPa})
$$

2. For high viscosity liquids not shown in these graphs, calculate the pressure loss by the following formula:

$$
\Delta \mathrm{P}_{2}=\mathrm{C} \times \frac{\mu_{2}}{\mu_{1}} \times \frac{1}{\mathrm{~d}}
$$

where $\Delta \mathrm{P}_{2}$: Pressure loss of high viscosity liquid (MPa)
μ_{1} : Maximum viscosity shown in the graph ($\mathrm{mPa} \cdot \mathrm{s}$)
μ_{2} : Viscosity of high-viscosity liquid (mPa.s)
d : Specific gravity of high-viscosity liquid (1 for water)
C : Pressure loss coefficient found from the maximum viscosity curve at a given flowrate

[^0]
REMOTE MEASURING SYSTEM

- HART protocol

- FOUNDATION fieldbus

- PROFIBUS

- Modbus

DIMENSIONS [Unit in mm]

- Transmitter Integral-mount Type

NOTE \star : For non-explosionproof models, pressuretight packing assembly is not furnished.

※: Dotted lines show the envelope of CB040, CB050.

Model	Nominal size	JIS			ASME/JPI			H	h1	h2	A	Approx. Weight (kg) (JIS 10K)
		10 K	20K	30K	150	300	600					
		L			L							
CB006	10 (1/2")	343	343	361	369	378	390.5	354	94	192	59	7.3
CB010	15 (1/2")	380	380	400	406	415	427.5	350	94	189	59	7.6
CB015	15 (1/2")	486	486	506	512	521	533.5	441	168	206	91	11.6
CB025	25 (1")	569	569	589	601	613	626	436	175	194	91	14.2
CB040	40 (1-1/2")	626	626	654	660	673	688.5	588	323	197	125	32.8
CB050	50 (2")	626	636	674	663	676	695	588	323	197	125	33.2

Model	Ferrule		Approx. Weight (kg)	
	Ferrule 10A	\mathbf{L}	$\boldsymbol{\phi D}$	533
CB010	Ferrule 15A	380	34	6.1
CB015	Ferrule 15A	476	34	9.9
CB025	Ferrule 25 (ISO), IDF 1S	559	50.5	11.1
CB040	Ferrule 38 (ISO), IDF 1.5S	606	50.5	29.3
CB050	Ferrule 51 (ISO), IDF 2S	606	64	29.3

※: As long as flange O.D. and bolt holes remain the same while flange rating may differ, the flange thickness with the higher rating is chosen in the above.

Process connection: A in mm; S (sanitary) in inches.

■ DIMENSIONS [Unit in mm]

- Transmitter Remote-mount Type

※: Dotted lines show the envelope of CB040, CB050.

Model	Nominal size	JIS			ASME/JPI			H	h1	A	Approx. Weight (kg) (JIS 10K)
		10 K	20K	30K	150	300	600				
		L			L						
CB006	10 (1/2")	343	343	361	369	378	390.5	257	94	59	4.7
CB010	15 (1/2")	380	380	400	406	415	427.5	254	94	59	5.0
CB015	15 (1/2")	486	486	506	512	521	533.5	345	168	91	9.0
CB025	25 (1")	569	569	589	601	613	626	340	175	91	11.6
CB040	40 (1-1/2")	626	626	654	660	673	688.5	491	323	125	30.2
CB050	50 (2")	626	636	674	663	676	695	491	323	125	30.6

Model	Ferrule			Approx. Weight (kg)
	Connection	\mathbf{L}	$\boldsymbol{\phi D}$	
CB006	Ferrule 10A	333	34	3.5
CB010	Ferrule 15A	380	34	7.3
CB015	Ferrule 15A	476	34	8.5
CB025	Ferrule 25 (ISO), IDF 1S	559	50.5	26.7
CB040	Ferrule 38 (ISO), IDF 1.5S	606	50.5	26.7
CB050	Ferrule 51 (ISO), IDF 2S	606	64	20.

※: As long as flange O.D. and bolt holes remain the same while flange rating may differ, the flange thickness with the higher rating is chosen in the above.
※: Terminal box materials: SCS13A adds approximately +1kg.

Process connection: A in mm; S (sanitary) in inches.

- Remote-mount transmitter (For the rack-mount transmitter, refer to GS No.GEJ516E.)

※: While stanchion mounting hardware is furnished as standard accessories, the customer is to furnish the stanchion.

LIST OF TRANSMITTER AND SENSOR CONDUIT CONNECTIONS

〈Cable entry：A〉
Remote－mount sensor

Explosionproof specifications	Connection thread specifications	Note
Non－explosionproof	Domestic：G3／4，Overseas：G3／4	
TIIS	G3／4	Adapter is connected（ $* 1$ ）
ATEX，IECEx	G3／4	Adapter is connected（＊2）
KCs	G3／4	
CSA	G3／4	Adapter is connected（＊3）
EAC	G3／4	Adapter is connected（＊2）
NEPSI	G3／4	Adapter is connected（＊2）
ITRI	G3／4	Adapter is connected（＊2）

※1：An adapter to convert G3／4 to＂G1／2＂is connected．
※2：An adapter to convert G3／4 to＂M20×1．5＂is connected．
$* 3$ ：You can choose an adapter to convert G3／4 to＂ $1 / 2$＂NPT，＂or to＂M20×1．5．＂
〈Cable entry：B〉
Integral－mount transmitter，Remote－mount transmitter

Explosionproof specifications	Connection thread specifications	Note
Non－explosionproof	Domestic：G3／4，Overseas：G3／4	
TIIS	$\mathrm{G} 3 / 4$	Cable gland is supplied．
ATEX，IECEx	$\mathrm{M} 25 \times 1.5$	
KCs	$\mathrm{M} 25 \times 1.5$	
CSA	$\mathrm{M} 25 \times 1.5$	Adapter is connected $(* 2)$
EAC	$\mathrm{M} 25 \times 1.5$	$(* 1)$
NEPSI	$\mathrm{M} 25 \times 1.5$	
ITRI	$\mathrm{M} 25 \times 1.5$	

※1：A cable gland can be supplied．Please consult OVAL sales office or nearest representative．
※2：You can choose an adapter to convert M 25×1.5 to one of＂ $3 / 4$＂NPT＂，＂ $1 / 2$＂NPT＂，or＂M 20×1.5＂．
〈Cable entry：C〉
Remote－mount transmitter

Explosionproof specifications	Connection thread specifications	Note
Non－explosionproof	G3／4	
TIIS	$\mathrm{G} 3 / 4$	Cable gland is supplied．
ATEX，IECEX	$\mathrm{G} 3 / 4$	Adapter is connected（＊1）
KCs	$\mathrm{G} 3 / 4$	
CSA	$\mathrm{G} 3 / 4$	Adapter is connected（ $* 2$ ）
EAC	$\mathrm{G} 3 / 4$	Adapter is connected（＊1）
NEPSI	$\mathrm{G} 3 / 4$	Adapter is connected（＊1）
ITRI	$\mathrm{G} 3 / 4$	Adapter is connected $(* 1)$

$※ 1$ ：An adapter to convert G3／4 to＂M20 $\times 1.5$＂is connected．
※2：You can choose an adapter to convert G3／4 to＂ $1 / 2$＂NPT，＂or to＂M20×1．5．＂

- WIRING

- Transmitter power and input/output signal wiring

- Terminal identification and description

Item	Label	Description	Remarks
Signal	A1 (+)	Analog output 1 (4 to 20mA)	1. Maximum load resistance is 600Ω for analog output 1 and 2.
	A1 (-)		
	A2 (+)	Analog output 2 (4 to 20 mA)	2. Pulse output(voltage pulse)transmission length is Maximum 10 m (at 10 kHz)
	A2 (-)		
	P1 (+)	Pulse output 1 (voltage/open drain output)	Maximum 1km (at 100 Hz) finished O.D: 0.75sq
	P1 (-)		
	P2 (+)	Pulse output 2 (voltage/open drain output)	3. In case of TIIS explosionproof type used under the ambient temperature of $45^{\circ} \mathrm{C}$
	P2 (-)		
	S.I. (+)	Status input (contact input)	higher, use a cable resistant to the temperature of $75^{\circ} \mathrm{C}$ or higher.
	S.I. (-)		
	S. 0 (+)	Status output (open drain output)	4. These input and output signals are invalid for FOUNDATION fieldbus, PROFIBUS PA.
	S. $0^{(-)}$		
	I/O (+)	Expanded in/out (Modbus communication, etc.)	Modbus communication: Maximum transmission length 1200 m at 0.75 sq FOUNDATION fieldbus or PROFIBUS PA communication: Maximum transmission length 1900 m at 0.8 sq
	I/O (-)		
Power	L (+)	Power (with DC power: +)	
	GND	Earth ground	
	N (-)	Power (with DC power: -)	

- Wiring between Sensor Unit and Remote-mount Transmitter

Barrier cover to be applied
Cut off shield wires here except for the

Sensor terminal box

NOTE 1. Do not fail to use dedicated interconnect cable.
2. Shield wire preparation
(1) Transmitter end:

As shown in the above figure, bundle shield wires colored in brown/red, green/white, blue/gray and purple/yellow/orange and cover the wires with a black tube. Then connect only one wire to the terminal box (black) taking care to avoid potential contact with the housing or conductive parts.
(2) Sensor end:

As shown in the figure, cover the brown/red shield wire with a black tube and connect it to the terminal box taking care to avoid potential contact with the housing or conductive parts. Clip all shield wires except brown/red as shown in the above figure.
(3) Recommended cable end treatment:

■ STANDARD INSTALLATION

1. Typical Installation (See figure at right.)
1) Avoid pipeline stresses on the meter.
2) The meter should be supported near and between connections to the process pipelines.
3) Avoid supporting the meter body directly.
4) Pipeline should be arranged such that the meter is constantly filled with the process fluid. Avoid, however, to install it in a pocket where slurries may build up.
5) Provide a valve downstream of the meter to allow zeroing by obtaining a true zero flow. We recommend to provide another valve upstream of the meter for servicing or maintenance.

2. Precautions at Installation

1) Locate the meter at least one meter from large transformers, motors, or other sources of electro-magnetic induction. Also avoid installation near the sources of excessive vibration, such as motors and pumps.
2) If it is desired to make a measurement of a process fluid requiring heat retention, heat trace may be applied directly to the sensor body. Heat trace should be held below $130^{\circ} \mathrm{C}$.
3) The sensor unit has an airtight construction. To prevent inner dew condensation at low temperature operation, the casing is filled with argon gas. For this reason, please take extra caution not to drop or apply impact on the sensor.
4) In a horizontal run, install the sensor having the transmitter placed on top as shown in the figure.
5) A control valve should be located downstream of the meter.

In an arrangement where cavitation may possibly take place, locate it at least 5 meters away.
6) To ensure consistent density measurement, retain heat.

3. Prevention of Cavitation

Cavitation if it takes place during measurement causes loss of meter accuracy, or results in dispersion of obtained measurements. For these reasons, maintain line pressure high enough to prevent cavitation upstream and downstream of the meter during measurement.

$$
\mathrm{Pd}=3 \Delta \mathrm{P}+1.3 \mathrm{Pv}(\mathrm{MPa}[\text { absolute }])
$$

Pd : Downstream pressure (MPa [absolute])
$\Delta \mathrm{P}$: Pressure loss across the meter (MPa)
Pv : Steam pressure of the process fluid at measurement (MPa [absolute $]$)

4. Physical Orientation

May be installed in a horizontal or vertical line.

>	Horizontal Piping	Vertical Piping

[^1]
Explosionproof specification

(For the rack-mount transmitter, refer to GS No.GEJ516E.)

1. TIIS Explosionproof

- Integral-mount type

- Transmitter symbol: Ex d [ib] IIC T4 X \quad - Sensor symbol: Ex ib IIB T4
- Transmitter and sensor ambient temperature: $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C} \quad$ - Communication: HART, Modbus, PROFIBUS and FOUNDATION fieldbus (FISCO)
- Explosionproof applied temperature: $+59^{\circ} \mathrm{C}$
- Communication: HART, Modbus, PROFIBUS and FOUNDATION fieldbus (FISCO)
- Remote-mount type
- Transmitter symbol: Ex d [ib] IIC T6 X
- Sensor symbol: Ex ib IIB T3, T4
- Transmitter ambient temperature: $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
- Communication: HART, Modbus, PROFIBUS and FOUNDATION fieldbus (FISCO)
※ Explosion specifications such as, temperature class, ambient temperature, and fluid temperature vary depending on the combination of transmitter and sensor. Refer to the table below for the explosionproof specification of each combination.

	Temperature class (Xmtr-sensor: spec.)	T3 (Xmtr-sensor: Remote-mount type)	T4	Group

2. ATEX, IECEx Explosionproof

- Integral-mount type
- Transmitter symbol: II2G Ex db ib IIB T4 Gb
- Transmitter and sensor ambient temperature: $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
- Fluid temperature: $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ (Other than CB015) $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (CB015)
- Sensor symbol: II2G Ex ib IIB T4 Gb
- Sensor to be connected: CB006 to CB050
- Communication: HART, Modbus, PROFIBUS and FOUNDATION fieldbus (FISCO)

- Remote-mount type

- Transmitter symbol: II2G Ex db [ib] IIC T6 Gb
- Sensor symbol: II2G Ex ib IIB T3, T4 Gb
- Transmitter ambient temperature: $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
- Sensor to be connected: CB006 to CB050
- Communication: HART, Modbus, PROFIBUS and FOUNDATION fieldbus (FISCO)

Sensor ambient temperature (Remote-mount type only)	$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$		
Fluid temperature (Remote-mount type only) Temperature class: T 3 Temperature class: T 4 $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}(\mathrm{CB015})$ $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}($ Other than CB015 $)$			

3. KCs Explosionproof

- Integral-mount type

- Transmitter symbol: Ex d ib IIB T4 - Sensor symbol: Ex ib IIB T4
- Transmitter and sensor ambient temperature: $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
- Sensor to be connected: CB006 to CB050
- Fluid temperature: $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
- Communication: HART, Modbus, PROFIBUS and FOUNDATION fieldbus (FISCO)
- Remote-mount type
- Transmitter symbol: Ex d [ib] IIC T6 • Sensor symbol: Ex ib IIB T3, T4
- Transmitter ambient temperature: $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
- Sensor to be connected: CB006 to CB050
- Communication: HART, Modbus, PROFIBUS and FOUNDATION fieldbus (FISCO)

Sensor ambient temperature (Remote-mount type only)	$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$	
Fluid temperature (Remote-mount type only)	Temperature class: T3	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	Temperature class: T4	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}(\mathrm{CB} 015) \\ & -40^{\circ} \mathrm{C} \text { to }+80^{\circ} \mathrm{C}(\text { Other than } \mathrm{CB} 015) \end{aligned}$

4. CSA Explosionproof

- Integral-mount type
- Transmitter symbol: Class I, Zone 1, Ex dib IIC T4 Gb

Class I, Zone 1, AEx d ib IIC T4 Gb (Integral-mount type)

- Transmitter and sensor ambient temperature: $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
-Fluid temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (CB015)
- Sensor symbol: Class I, Zone 1, Ex ib IIB T4 Gb

Class I, Zone 1, AEx ib IIB T4 Gb

- Sensor to be connected: CB006 to CB050
- Communication: HART, Modbus, PROFIBUS and FOUNDATION fieldbus (FISCO)
$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ (Other than CB015)
- Remote-mount type
- Transmitter symbol: Class I, Zone 1, Ex d [ib] IIC T6 Gb Class I, Zone 1, AEx d [ib] IIC T6 Gb
- Transmitter ambient temperature: $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
- Sensor symbol: Class I, Zone 1, Ex ib IIB T3, T4 Gb
Class I, Zone 1, AEx ib IIB T3, T4 Gb
- Sensor to be connected: CB006 to CB050
- Communication: HART, Modbus, PROFIBUS and FOUNDATION fieldbus (FISCO)

Sensor ambient temperature (Remote-mount type only)	$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$		
Fluid temperature (Remote-mount type only)	Temperature class: T 3	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
	Temperature class: T 4	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}(\mathrm{CBO15})$ $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ (Other than $\left.\mathrm{CBO15}\right)$	

5. EAC Explosionproof

- Integral-mount type
- Transmitter symbol: 1 Ex d ib IIB T4 Gb X
- Transmitter and sensor ambient temperature: $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
- Fluid temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (CB015) $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ (Other than CB015)
- Sensor symbol: 1 Ex ib IIB T4 Gb
- Sensor to be connected: CB006 to CB050
- Communication: HART, Modbus, PROFIBUS and FOUNDATION fieldbus (FISCO)
- Remote-mount type
- Transmitter symbol: 1 Ex d [ib] IIC T6 Gb X - Sensor symbol: 1 Ex ib IIB T3, T4 Gb
- Transmitter ambient temperature: $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Sensor to be connected: CB006 to CB050
- Communication: HART, Modbus, PROFIBUS and FOUNDATION fieldbus (FISCO)

Sensor ambient temperature (Remote-mount type only)	$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

Fluid temperature (Remote-mount type only)	Temperature class: T 3	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	Temperature class: T 4	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}(\mathrm{CBO15})$
		$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ (Other than CB015)

6. NEPSI Explosionproof

- Integral-mount type
- Transmitter symbol: Ex d ib IIB T4 Gb
- Transmitter and sensor ambient temperature: $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
- Fluid temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (CB015) $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ (Other than CB015)
- Sensor symbol: Ex ib IIB T4 Gb
- Sensor to be connected: CB006 to CB050
- Communication: HART, Modbus
- Remote-mount type
- Transmitter symbol: Ex d [ib] IIC T6 Gb
- Transmitter ambient temperature: $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
- Sensor symbol: Ex ib IIB T3, T4 Gb
- Sensor to be connected: CB006 to CB050
- Communication: HART, Modbus

Sensor ambient temperature (Remote-mount type only)	$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$				
Fluid temperature (Remote-mount type only) Temperature class: T 3 $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Temperature class: T 4 $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}(\mathrm{CBO15})$ $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}($ Other than CB 015$)$					
:---					

7. ITRI Explosionproof

- Integral-mount type
- Transmitter symbol: Ex db ib IIB T4 Gb
- Transmitter and sensor ambient temperature: $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
- Fluid temperature: $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ (Other than CB 015)
$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (CB015)
- Sensor symbol: II2G Ex ib IIB T4 Gb
- Sensor to be connected: CB006 to CB050
- Communication: HART, Modbus

- Remote-mount type

- Transmitter symbol: Ex db [ib] IIC T6 Gb
- Transmitter ambient temperature: $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
- Sensor symbol: II2G Ex ib IIB T3, T4 Gb
- Sensor to be connected: CB006 to CB050
- Communication: HART, Modbus

Sensor ambient temperature (Remote-mount type only)	$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

ABOUT MARITIME CERTIFICATION

The product is approved for the ship classification under the conditions below.

Item	Contents	
Classification Society	DNV GL	
Location Classes	Temperature Humidity Vibration EMC Enclosure	D ($-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$) B (Relative Humidity: less than 100\%) A (2 to 13.2 Hz with 1 mm amplitude, 13.2 to 100 Hz with 0.7 g acceleration) * Install at the place where mechanical vibration from engine, compressor, pump and so on is not introduced into transmitter directly. A (All locations except bridge and open deck) C (IP56)

REGARDING CABLE WIRING

If using ALTImass as certified equipment for maritime applications, use metal conduit tube, marine cable (with shield), etc. for the power and signal cables and connect shielded sections to the transmitter housing.
Be sure to use the dedicated cable for the connection between the sensor and the transmitter, and implement waterproofing treatment which satisfies IP56.

AMBIENT TEMPERATURE

Allowable ambient temperature permitted for the sensor unit is as described in the table below.
(The following table describes the condition for the non-explosionproof models. For the explosionproof models, make sure to satisfy the temperature conditions described in "Explosionproof Specification" as well as the condition described below.)

Transmitter construction	
Integral-mount type	Remote-mount type
[Fluid temperature] $+130^{\circ} \mathrm{C}$ and below	[Sensor unit ambient temp.]
[Ambient temperature] -40 to $+55^{\circ} \mathrm{C}$	CB006 to CBO25: $-40^{\circ} \mathrm{C}$ and above
	CB040/CB050: $-20^{\circ} \mathrm{C}$ and above
	to maximum ambient temp. in the graph below

Remote-mount type sensor unit (temp. class: standard) Maximum ambient temp. range

※Please contact us in the case the ambient temperature exceeds maximum ambient temperature in the graph.

Heat insulation can be applied to the sensor unit itself at the fluid temperature. However, do not apply heat insulation to terminal box or adapter.

■ PRODUCT CODE EXPLANATION

- Main code

(1)	(2)	Model			
C	B	ALTImass Type B			
(3)	(4)	5) Meter size/Nominal Diameter			
			JIS flange	ASME.JPI flange	Ferrule
0	0	6	10mm	1/2"	10A
0	1	0	15 mm	1/2"	15A
0	1	5	15 mm	1/2"	15A
0	2	5	25mm	$1^{\prime \prime}$	25 (ISO), IDF 1S
0	4	0	40 mm	1-1/2"	38 (ISO), IDF 1.5S
0	5	0	50 mm	$2^{\prime \prime}$	51 (ISO), IDF 2S
(6)	-				
(7)	Fluid category				
L	Liquid				
(8)	Temp. category ※1				
1	Standard ($130^{\circ} \mathrm{C}$ and lower)				
(9)	Major parts material				
S	SUS316L				
(10)	(11)	Process connection			
J	1	JIS10K			
J	2	JIS20K			
J	3	JIS30K			
A	1	ASME150			
A	3	ASME300			
A	6	ASME600			
P	1	JPI150			
P	3	JPI300			
P	6	JPI600			
H	S	ISO Ferrule			
Z	9	Special			
(12)	-				
(13)	Explosion-proof				
0	Non-explosionproof				
1	TIIS				
2	ATEX/IECEX				
3	KCs				
4	CSA (C-US)				
5	EAC				
7	NEPSI ※2				
T	ITRI $\begin{aligned} & \text { 2 }\end{aligned}$				
(14)	Ex-proof temp. class				
0	Non-explosionproof				
3	T3				
4	T4				

(15)	Regulations
0	Standard
H	High Pressure Gas Safety Act(Individual test)*w/Material test certificate (Designed on PO issued)
J	High Pressure Gas Safety Act (Completion inspection) *w/Material test certificate
T	Fire Service Act \quad *w/Material test certificate
S	Ship Classification Society Pattern Approval
P	Ship Classification Society Pattern Approval + w/Material test certificate
C	CRN (Canadian Registration Number) Pattern approval $※ 3$
K	CRN (Canadian Registration Number) Pattern approval+w/Material test certificate $\ldots 3$
F	w/Material test certificate
(16)	-
(17)	Transmitter ※4
1	ALTImass
3	Rack-mount transmitter (Refer to GS No.GEJ516E.)
(18)	Transmitter construction $※ 5$
1	Integral-mount
2	Remote-mount (Terminal box materials: ADC12)
3	Remote-mount (Terminal box materials: SCS13A)
(19)	Power source
1	20 to 30VDC
2	85 to 264VAC (Safety rated 100 to 240VAC $50 / 60 \mathrm{~Hz}$)
(20)	Pulse
0	When "2, 3" are chosen for "Communication interface (21) "
B	Voltage pulse
G	Open drain pulse (equivalent to open collector pulse) (standard)
(21)	Communication interface
1	HART communication (HART protocol version 7, Bell202)
2	FOUNDATION Fieldbus H1communication (ITK version6)
3	PROFIBUS PA communication (Profile version3.02)
4	Modbus communication (RS-485 Modbus protocol)
(22)	Version code
B	Version code: B
(23)	-
(24)	Special shape designation
0	Standard
Z	Special shape

※1: Explosionproof specifications are restricted based on temperature class.
※2: "2, 3" for "Communication interface (21) " are in preparation and is not available yet.
※3: CRN is applicable only to CSA explosionproof and ASME flange models.
*4: Applicable specifications differ with the rack-mount transmitter.
For detailed product code explanation, refer to GS No.GEJ516E.
*5: If temperature of the fluid exceeds $80^{\circ} \mathrm{C}$ for explosionproof types, only "Remote-mount" type is available for the transmitter construction.
In case of non-explosionproof, Integral-mount type can be used up to $130^{\circ} \mathrm{C}$ by restricting the transmitter ambient temp. to $45^{\circ} \mathrm{C}$ at maximum.
When " 3 " is chosen for "Transmitter construction (18)" following limitations apply:
Code (8) Only "Standard" available
Code (17) Only "Rack-mount transmitter" available

PRODUCT CODE EXPLANATION

- Additional code

Category of High Pressure Gas			
H	P	0	Other than High Pressure Gas
H	P	1	Toxic gas and flammable gas
H	P	2	Toxic gas
H	P	3	Flammable gas
H	P	4	Other than toxic or flammable gas
Density calibration			
M	0	0	Density calibration
Special test (instrumental error)			
A	2	0	By certified measurer
A	9	9	Designation of instrumental error test method
Addition of one (1) test point, etc.			
Flow direction			
F	L	0	Left to right
F	R	0	Right to left
F	D	0	Bottom to top
Designated special paint on body			
B	X	0	Customer designation
Designated special paint on transmitter			
S	F	0	Corrosion proof
S	D	0	Salinity tolerance
S	E	0	Acid tolerance
S	X	0	Customer designated paint
Cleansing	Special treatment		
T	W	0	Oil free and Water free treatment
T	F	0	Food cleansing

	cu	nen	
D	S	J	SPEC. \& DWG (Approval Drawing) (Japanese)
D	S	E	SPEC. \& DWG (Approval Drawing) (English)
D	R	0	Re-submission of SPEC. \& DWG
D	C	J	Final DWG (Japanese)
D	C	E	Final DWG (English)
D	P	J	Strength Calculation sheet (Japanese)
D	P	E	Strength Calculation sheet (English)
S	E	J	Inspection Certificate (Calibration report) (Japanese)
S	E	E	Inspection Certificate (Calibration report) (English)
S	T	J	Pressure test report (Japanese)
S	T	E	Pressure test report (English)
S	A	J	Airtight test report (Japanese)
S	A	E	Airtight test report (English)
D	D	J	Dimensional check record (Japanese)
D	D	E	Dimensional check record (English)
S	P	J	Penetrant test report (Japanese)
S	P	E	Penetrant test report (English)
S	R	J	Radiographic inspection report Welded part of pressure resistant vessel (Japanese)
S	R	E	Radiographic inspection report Welded part of pressure resistant vessel (English)
S	X	J	PMI test report (Japanese)
S	X	E	PMI test report (English)
S	S	J	Impact test report (Japanese) Manifold only
S	S	E	Impact test report (English) Manifold only
D	Y	J	WPS/PQR (Japanese)
D	Y	E	WPS/PQR (English)
D	9	J	Photo (Japanese)
D	9	E	Photo (English)
D	T	J	Inspection procedure (Japanese)
D	T	E	Inspection procedure (English)
C	A	J	Traceability certificate: A set Only available in Japanese
C	B	J	Traceability certificate: B set Only available in Japanese
C	C	J	Traceability certificate: C set Only available in Japanese
C	D	J	Traceability certificate: D set Only available in Japanese
Witness Test			
V	1	0	Required

FORMER PRODUCT CODE EXPLANATION

The new product code has been implemented since April 2017.
Therefore, the product code explanation of the old product code will not be updated after April 2017. Contact OVAL if you wish to order with the old product code for reasons such as type approval.

*1: Explosionproof specification has restrictions on temperature class.
*2: If temperature of the fluid exceeds $80^{\circ} \mathrm{C}$, only "Remote-mount" type is available for the transmitter construction.
$* 3$: When FOUNDATION fieldbus, PROFIBUS is selected for communication interface, product code categories of analog output is " X " and pulse output is "X" (pulse output type:"0").
*4: When "Volume flow (fixed density)" is selected for analog output or pulse output, fixed density will be applied.
*5: Simultaneous output of both "Volume flow (fixed density)" and "Volume flow (true density)" for analog output and pulse output is not available.
*6: "2" and "3" for the product code (16) are not available. (in preparation)

■ PLEASE SUPPLY THE FOLLOWING INFORMATION WHEN YOU INQUIRE．

（Fill in the form below to the extent possible．Further details will be finalized in later consultation．）
－Fill in the blanks．Tick the boxes \square that apply．

※1：Special fluids，such as of high viscosity or slurries，should be stated precisely and in detail．

[^0]: ※1: Pressure loss is calculated with Newtonian fluid. For Non-Newtonian fluid, Please consult OVAL sales office or nearest representative.

[^1]: Do not forget to specify the physical orientation when you order.

